
Looping

Mina Maher
@menamosadef5@gmail.com

 Iteration/Looping in C Programming

What is Looping ?
• The looping can be defined as repeating the
same process multiple times until a specific
condition satisfies. It is known as iteration also.
There are three types of loops used in the C
language language. In this part of the tutorial, we
are going to learn all the aspects of C loops.

● The looping simplifies the complex problems into the easy ones. It enables
to alter the flow of the program so that instead of writing the same code
again and again, we can execute the same code for a finite number of times.

● For example, if we need to (printf) ‘UNIVERSITY OF CALCUTTA’ 10-times
then, instead of using the (printf) statement 10 times, we can use (printf)
once inside a loop which runs up to 10 iteration.

Why looping?

● It provides code reusability.
● Using loops, we do not need to write the same code again and
 again.
● Using loops, we can traverse over the elements of data structures (array or

linked lists).

What are the advantages of Looping?

There are three types of loops in C language those are given below:

● While
● do while
● for

Types of C Loops

● Counter
● Initialisation of the counter with initial value
● Condition to check with the optimum value of the counter .
● Statement(s) to be executed by iteration
● Increment/decrement

Essential components of a loop

Flowchart for a loop

● The “while” loop executes the code
block “block” as long as the conditional
statement “condition” is true, in this
case the loop is denoted as a pre-
tested loop (the condition encircles the
code block).

● The syntax of while loop in c language
is given below :

“while” loop in C
variable-initialisation;
while (condition) {
 block;
}

Write a C-program to print 10 natural numbers

#include <stdio.h> output
 int main() { 1
 int i=1; 2
 while(i <= 10)
 {
 printf("%d \n",i);
 i=i+1;
 }
} 10

do-while loop in C
● The “do-while” loop continues until a given

condition satisfies. It is also called post-tested
loop. It is used when it is necessary to execute
the loop at least once (mostly menu driven
programs).

● The syntax of The syntax of do-while loop in c
language loop in c language is given below: is
given below:

int index = 0;
do
{
 block;
} while (condition);

Flowchart for the “do-while” loop

/* same above project */
#include <stdio.h>
int main(void)
{
 int i = 0; output
 do 1
 {
 printf("%d \n",i);
 i=i+1;
 } while(i<=10);

return 0;
 } 10

● A “for” loop in C language is used to
iterate the statements or a part of the
program several times. It is frequently
used to traverse the data structures
like the array and linked list.

“for” loops in C The syntax of for loop in c language is given
below: .

 for (initialization; condition/s; statement/s)
 {
 block;
 }

● Initialization: an initialization of the loop
variable and more than one variable can
be initialised.

● Condition/s: a conditional expression, it
checks for a specific condition to be
satisfied and if it is not, the loop is
terminated, it also can have more than
one condition. However, the loop will
iterate until the last condition becomes
false. Other conditions will be treated as
statements.

● Statement/s: can be used as a statement
to update the value of the loop variable
(re-assignment statement).

The syntax of for loop in c language is given
below: .

 for (initialization; condition/s; statement/s)
 {
 block;
 }

Flowchart : “for” loop

program to print natural numbers 1 to 15
#include <stdio.h>
int main()
{
 int i;
 for (i = 1; i <= 15; i = i+1) {
 printf("%d, ", i);
 }

return 0;
}
output 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

Nested loops in C
C programming language allows to use one loop inside another loop.

for (init/s; condition/s; statement/s)
{
 for (init/s; condition/s; statement/s)
 {
 statement(s);
 }
 statement(s);
}

● The syntax for a nested while
loop statement in C
programming language is as
follows :

 while (condition)
{
 while (condition)
 {
 statement(s);
 }
 statement(s);
 }

● The syntax for a nested do...while loop
statement in C programming language
is as follows:

NOTE :
loop nesting is that you can put any type
of loop inside of any other type of loop.
For example, a for loop can be inside a
while loop or vice versa

 do
 {
 statement(s);
 do
 {
 statement(s);
 } while (condition);
 } while (condition);

1. When the break statement is encountered inside a loop, the loop is
immediately terminated and program control resumes at the next statement
following the loop.
2. It can be used to terminate a case in the switch statement (covered in the
next chapter).

NOTE :
If you are using (nested loops) (i.e., one loop inside another loop), the break
statement will stop the execution of the innermost loop and start executing the
next line of code after the block

break-statement in C
The break statement in C programming language has the following two

usages :

● Flowchart of break :

SYNTAX and FLOWCHART
The syntax for a break statement in C is as follows:
 break ;

/* project about break statement */
#include <stdio.h>
int main ()
{
 /* local variable definition */
 int a = 10;
 /* while loop execution */
 while (a < 20)
 {
 printf("value of a: %d\n", a);
 a++;
 if (a > 15)
 {
 /* terminate the loop using break statement */
 break;
 }
 }
 return 0;
}

When the above code is compiled and executed, it
produces the following
Output :
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15

Continue-statement in C
● The continue statement in C programming language works somewhat like

the break statement. Instead of forcing termination, however, continue forces
the next iteration of the loop to take place, skipping any code in between.

● For the “for” loop, the continue statement causes the conditional test and
increment portions of the loop to be executed. For the “while” and “do...while”
loops, the continue statement causes the program control to pass the
conditional tests.

 Flowchart of Continue

Syntax and Flowchart
The syntax for a continue statement in C is as follows:
 continue;

#include <stdio.h>
int main ()
{
 /* local variable definition */
 int a = 10;
 /* do loop execution */
 do {
 if (a == 15) {
 /* skip the iteration */
 a = a + 1;
 continue;
 }
 printf("value of a: %d\n", a);
 a++;
 } while(a < 20);
 return 0;
 }

When the above code is compiled and executed, it produces the
following
Result :
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18
value of a: 19

A goto statement in C programming language provides an unconditional jump
from the goto to a labeled statement in the same function.

NOTE:
Use of goto statement is highly discouraged in any programming language
because it makes difficult to trace the control flow of a program, making the
program hard to understand and hard to modify. Any program that uses a
goto can be rewritten so that it doesn't need the goto.

goto statement in C

The syntax for a goto statement in C is as follows:

 goto label;
 ..
 .
 label: statement;

Note :
Here label can be any plain text except C keyword and it can be set anywhere
in the C program above or below to goto statement.

Syntax and Flowchart

Flowchart of go to :

Example
#include <stdio.h>
int main ()
{
 /* local variable definition */
 int a = 10;
 /* do loop execution */
 LOOP:
 do
 {
 if (a == 15) {
 /* skip the iteration */
 a = a + 1;
 goto LOOP;
 }
 printf ("value of a: %d\n", a);
 a++;
 } while (a < 20);
 return 0;
}

When the above code is compiled and executed, it produces the
following result:
 value of a: 10
 value of a: 11
 value of a: 12
 value of a: 13
 value of a: 14
 value of a: 16
 value of a: 17
 value of a: 18
 value of a: 19

The Infinite Loop
● A loop becomes infinite loop if a

condition never becomes false.
.
● The for loop is traditionally used

for this purpose. Since none of
the three expressions that form
the for loop are required, you can
make an endless loop by leaving
the conditional expression empty.

#include<stdio.h>
 int main () {
 for(; ;)
 {
 printf("This loop will run forever.\n");
 }
 return 0;
}

● When the conditional expression is absent, it is assumed to be true. You may
have an initialization and increment expression, but C programmers more
commonly use the for(;;) construct to signify an infinite loop.

NOTE:
 You can terminate an infinite loop by pressing Ctrl + C keys.

 Thank you
 At the end please JUST SMILE

